Cone photoreceptors in bass retina use two connexins to mediate electrical coupling.

نویسندگان

  • John O'Brien
  • H Bao Nguyen
  • Stephen L Mills
چکیده

Electrical coupling via gap junctions is a common property of CNS neurons. In retinal photoreceptors, coupling plays important roles in noise filtering, intensity coding, and spatial processing. In many vertebrates, coupling is regulated during the course of light adaptation. To understand the mechanisms of this regulation, we studied photoreceptor gap junction proteins. We found that two connexins were expressed in bass cone photoreceptors. Connexin 35 (Cx35) mRNA was present in many cell types, including photoreceptors and amacrine, bipolar, and a few ganglion cells. Antibodies to Cx35 labeled abundant gap junctions in both the inner and outer plexiform layers. In the outer plexiform layer, numerous plaques colocalized with cone telodendria at crossing contacts and tip-to-tip contacts. Cx34.7 mRNA was found predominantly in the photoreceptor layer, primarily in cones. Cx34.7 immunolabeling was limited to small plaques immediately beneath cone pedicles and did not colocalize with Cx35. Cx34.7 plaques were associated with a dense complex of cone membrane beneath the pedicles, including apparent contacts between telodendria and cone pedicles. Tracer coupling studies of the connexins expressed in HeLa cells showed that coupling through Cx35 gap junctions was reduced by protein kinase A (PKA) activation and enhanced by PKA inhibition through a greater than fivefold activity range. Cx34.7 was too poorly expressed to study. PKA regulation suggests that coupling through Cx35 gap junctions can be controlled dynamically through dopamine receptor pathways during light adaptation. If Cx34.7 forms functional cell-cell channels between cones, it would provide a physically separate pathway for electrical coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoreceptor coupling is controlled by connexin 35 phosphorylation in zebrafish retina.

Electrical coupling of neurons is widespread throughout the CNS and is observed among retinal photoreceptors from essentially all vertebrates. Coupling dampens voltage noise in photoreceptors and rod-cone coupling provides a means for rod signals to enter the cone pathway, extending the dynamic range of rod-mediated vision. This coupling is dynamically regulated by a circadian rhythm and light ...

متن کامل

Connexin35/36 gap junction proteins are expressed in photoreceptors of the tiger salamander retina.

Photoreceptors in the vertebrate retina are electrically coupled with one another. Such coupling plays important roles in visual information processing. Physiological properties of rod-rod and rod-cone coupling have been best studied in the salamander retina, yet the cellular and molecular basis of these electrical synapses has not been established. Recently, connexin35/36 (Cx35/36) gap junctio...

متن کامل

Structure and arrangement of photoreceptors in the retina of big eye kilka, Clupeonella grimmi (Kessler 1877)

The big eye kilka, Clupeonella grimmi, is a marine fish living in depth of 20 to 200 meter of the Caspian Sea. Its eye and retina were processed for histological and SEM studies. Paraffin embedded retina was cut radially and tangentially in 5 ?m thickness and stained with hematoxylin and eosin method. The unstained sections were manipulated for SEM image observations. Tangential retinal sect...

متن کامل

Dopamine Regulation of Cone-Cone Gap Junctions in Ground Squirrel Retina

Cone photoreceptors are electrically coupled such that when the electrical potential in one cell changes, it also changes in adjacent, coupled cells. Phosphorylation of the cone gap junction protein, connexin 36 (Cx36), determines whether a coupling channel is “open” or “closed”. Cx36containing gap junctions are phosphorylated in the open state and dephosphorylated in the closed state. Cone-con...

متن کامل

Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina.

We investigated gap-junctional coupling of rods and cones in macaque retina. Cone voltage responses evoked by light absorption in neighboring rods were briefer and smaller than responses recorded in the rods themselves. Rod detection thresholds, calculated from noise and response amplitude histograms, closely matched the threshold for an ideal detector limited by quantal fluctuations in the sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 24  شماره 

صفحات  -

تاریخ انتشار 2004